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Figure 1: Honeycomb lattice, with definition of nearest/neighbor vectors a1,a2,a3 and
lattice vectors b1, b2, b3. Shown in red are the directed, complex next nearest-neighbor
hoppings present in the Haldane model.

1 Moiré materials

1.1 Graphene and Dirac equation

Following Haldane1, we consider an electronic system with nearest neighbour (NN) and
next nearest neighbour (NNN) hopping on a honeycomb lattice, as shown in Fig. 1. There
are 3 nearest neighbours, corresponding to the vectors a1, a2, a3 and 6 next nearest
neighbours, for hopping between sites on the same sublattice (A or B), corresponding to
the lattice vectors

b1 = a2 − a3,

b2 = a3 − a1,

b3 = a1 − a2,

b4 = −b1,

b5 = −b2,

b6 = −b3.

With the spinors (in k space)

(
ψk,A

ψk,B

)
(1)

1F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization
of the ”parity anomaly”, Phys. Rev. Lett. 61(18), 2015–2018 (1988).
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1 MOIRÉ MATERIALS

describing the electrons on the two sublattices A and B, we consider the Hamiltonian

Ĥ = t1

3∑
i=1

[
cos(k · ai)σ1 + sin(k · ai)σ2

]
+2t2 cosϕ

( 3∑
i=1

cos(k · bi)
)
σ0 (2)

+
[
M − 2t2 sinϕ

( 3∑
i=1

sin(k · bi)
)]
σ3.

The parameters in this Hamiltonian are:

• t1, describing NN hopping. This parameter delivers the main band structure of
graphene.

• t2, describing NNN hopping with a directed flux ϕ. The choice ϕ = 0 describes
graphene, whereas ϕ ̸= 0 provides Haldane’s model.

• M , describing a staggered SL potential (Semenoff term). The choice M → ±∞
delivers two (”boring”) flat bands localized on either sublattice.

The symmetries of the system are:

• Graphene (with only t1): C6v and time reversal symmetry (TRS).

• t2 ̸= 0 with ϕ ̸= 0, π breaks TRS.

• M ̸= 0 breaks inversion symmetry and C6v → C3v; M ̸= 0 alone preserves TRS.

Special points in k-space are K and K’ at the corners of the Brillouin zone (see Fig. 2).
Their coordinates kα [with α = +1 (−1) for K (K’)] satisfy

(kα · a1,kα · a2,kα · a3) = σ
(
0,

2π

3
,−2π

3

)
, kα · bi =

2π

3
α (3)

for some permutation σ.
The low-energy theory is obtained by a k ·p perturbation expansion around K and K’.

With

cos(0) ≃ 1,

sin(0 + δk · a1) ≃ δk · a1,

cos
(2π
3

+ δk · a2

)
≃ −1

2
−

√
3

2
δk · a2,

sin
(2π
3

+ δk · a2

)
≃

√
3

2
− 1

2
δk · a2,

cos
(
− 2π

3
+ δk · a3

)
≃ −1

2
+

√
3

2
δk · a3,

sin
(
− 2π

3
+ δk · a3

)
≃ −

√
3

2
− 1

2
δk · a3

(4)
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1.1 Graphene and Dirac equation

Figure 2: The first Brillouin zone of a triangular/hexagonal lattice in k-space. High-
symmetry points are labeled, the three M points M1, M2, M3 are equivalent with sixfold
rotation symmetry (or threefold rotation and time reversal). The K and K ′ point are
equivalent under time-reversal or twofold rotation.

we obtain

3∑
i=1

cos(k · ai) ≃
√
3

2
δk · (a3 − a2), (5)

3∑
i=1

sin(k · ai) ≃
1

2
δk · (a1 − a2 − a3). (6)

Since a3 − a2 is in kx-direction with magnitude 2a/
√
3 and a1 − a2 − a3 in ky-direction

with magnitude 2a (with a the NN distance), the effective Hamiltonian is

Ĥeff,α = t1a(kxσ1 + αkyσ2) +mασ3, (7)

where
mα =M − 3

√
3αt2 sinϕ, (8)

we redefined the momenta (δk → k) and α = 1 (−1) for the perturbation expansion
around K (K’). The Pauli matrices σ1, σ2, σ3 mutually anticommute, therefore (7) is the
Hamiltonian of a Dirac equation with mass term mα. The energy bands are then given by

Ek,α,± = ±
√

(t1a)2(k2x + k2y) +m2
α. (9)

The competing masses M and t2 sinϕ lead to different phases, as shown in the phase
diagram in Fig. 3, where the phase boundaries correspond to gap closings.

The phases can be distinguished by the Chern number C, a topological invariant, taking
different integer values in the different phases. The Chern number is defined by

C =
1

2π

∫
d2kFxy, (10)

where Fxy is the Berry curvature, with the general definition

Fxy = i
(
⟨∂kxuk|∂kyuk⟩ − ⟨∂kyuk|∂kxuk⟩

)
. (11)
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1 MOIRÉ MATERIALS

Figure 3: Phase diagram of the Haldane model

If H(k) = d(k) · σ, with σ = (σ1, σ2, σ3), we can use

C =
1

2π

∫
d2k

d · (∂kxd× ∂kyd)

2|d|3

=
1

2π

1

2

∫
d2k

∑
α=±1mααt

2
1a

2√
t21a

2k2 +m2
α

3 , (12)

since

∂kxd =

 t1a
0
0

 , ∂kyd =

 0
αt1a
0

 . (13)

Therefore,

C =
1

2π

1

2

1

t1a
2π

∑
α=±1

mαα

∫
dk k

1√
k2 +

(
mα
t1a

)23︸ ︷︷ ︸
1∣∣mα

t1a

∣∣
=

1

2

∑
α=±1

sgn(mαα) (14)

=

{
0, M large,
±1, t2 sin(ϕ) large. (15)

As a physical consequence, the off-diagonal conductivity is quantized, σxy = e2

h C.

1.2 Structure and electronic structure of TMDs

Examples of TMDs are MoTe2, WTe2, MoSe2, WSe2, MoS2, WS2. They are van der Waals
materials, exfoliatable and come in different structures, some of them meta-stable. The
nomenclature is as follows:

• H . . . hexagonal (TM atom coordination)
T . . . trigonal
M . . .monoclinic

• nH / nT / nM: n layers in 3D unit cell
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1.3 Twisting

Figure 4: Absence of inversion symmetry in 1H-TMDs.

Figure 5: Schematic electronic structure in each valley in TMDs.

• primes for different space groups: 1T, 1T’,. . .

Here we consider the structure 1H, i.e., hexagonal monolayer TMDs. They have a large
SOC compared to graphene and large M , due to the broken SL symmetry (cf. Fig. 4). As
consequence a so-called “valley Hall effect” arises, as depicted in Fig. 5 (remark that in
the K’-valley the arrows are reversed, due to TRS): excitations in one valley have a Hall
response, described by the effective Hamiltonian

Ĥeff,α = t1a(kxσ1 − αkyσ2) +Mσ3 +

(
∆c 0
0 ∆v

)
αŜ3, (16)

where ∆c (∆v) are the SOC strengths. The matrix in the last term acts on the degrees of
freedom of the σ matrices, while Ŝ3 is the z-component of the spin operator.

1.3 Twisting

Twisting is fundamentally different in graphene and TMDs, since the starting points are
different: massless vs. massive. For graphene this gives rise to a “magic angle”. For small
angles, each valley is considered separately (cf. Fig. 6).
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1 MOIRÉ MATERIALS

Figure 6: Construction of the moiré Brillouin zone in twisted bilayer materials.

1.3.1 Twisting graphene

The effective Hamiltonian (per layer graphene) is

hk(θ) = −vk
(

0 ei(θk−θ)

e−i(θk−θ) 0

)
, (17)

i.e., the same as before, where θk is the angle of the momentum k relative to the x-axis.
With two layers the intralayer Hamiltonian is

Ĥ0 = |1⟩⟨1|h(θ/2) + |2⟩⟨2|h(−θ/2), (18)

where |j⟩⟨j| is the projector on the j-th layer.
The interlayer hopping is described by the matrix elements

Tαβ
kp′ = ⟨ψ(1)

k,α|HT |ψ(2)
p′,β⟩, (19)

where the upper index refers to the layer (1 or 2), α, β to the sublattice (A or B) and
p′ = M(θ)p, with M(θ) the rotation by θ. This includes contributions from all unit cells
in reciprocal space but decreases rapidly when qd⊥ > 1, with d⊥ the layer separation
(d⊥ ≳ 2a), due to the 3D separation R =

√
r2 + d2⊥. Then, approximately, only 3 BZ

adjacent to the Dirac point contribute significantly:

Tαβ(r) = ω

3∑
j=1

e−iqj ·rTαβ
j , (20)

where the qj ’s are shown in Fig. 6, ω is the hopping energy (ω ≃ 110meV for non-twisted
graphene) and

T1 =

(
1 1
1 1

)
, T2 =

(
e−iϕ 1
eiϕ e−iϕ

)
, T3 =

(
eiϕ 1
e−iϕ eiϕ

)
, (21)
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1.3 Twisting

Figure 7: Intuition for the parameter α = ω
vkθ

that determines the magic angles in twisted
bilayer graphene can be obtained from comparing the hybridization energy scale with the
relative displacement of the Dirac cones in momentum space due to the rotation.

Figure 8: Qualitative evolution of the effective velocity in the moiré bands with the twisting
parameter α. v∗ = 0 defines the magic angles.

with ϕ = 2π/3.
Numerical diagonalization of this Hamiltonian keeping vectors up to ω/ℏv requires

matrices of dimension ∼ 10θ−2 (θ in degrees), compared to ∼ 104θ−2 for a full diagonaliza-
tion. It is appropriate to use a single parameter α = ω/(vkθ), with kθ = |qi|. The intuition
behind this choice is sketched in Fig. 7.

The experiments do not show a monotonical narrowing with θ, but the appearence of
so-called “magic angles” (at θ = 1.05◦ and other values), at which the Dirac point velocity
v∗ vanishes, as shown in Fig. 8.

To reproduce these results, a NN truncation in momentum hopping gives the Hamilto-
nian

Ĥk =


hk(θ/2) T1 T2 T3
T †
1 hk+q1

(−θ/2) 0 0

T †
2 0 hk+q2

(−θ/2) 0

T †
3 0 0 hk+q3

(−θ/2)

 . (22)

The k · p expansion around k = 0 results in two bands with effective Hamiltonian

Ĥeff,k = −v∗σ · k, (23)
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1 MOIRÉ MATERIALS

Figure 9: Moiré energy bands with a Dirac point at KM.

with

v∗ = v
1− 3α2

1 + 6α2
≃ v(1− 9α2) −→ 0 for α→ 1/3. (24)

Per valley there are 4 bands which are spin degenerate, for a total of 8 bands. For a better
approximation one considers matrices of the form

Ti = ω0

[
diagonal

]
+ ω1

[
off-diagonal

]
, (25)

where the diagonal (off-diagonal) matrix describes AA (AB) hopping. This results in
a Dirac point near KM for ω0 ̸= ω1, as shown in Fig. 9. Furthermore, all bands are
anomalous2, with p-h symmetry taken into account, not lattice regularizable at any cuts.
The flat bands are topologically fragile, or, with p-h symmetry, topologically stable, and
hence not lattice regularizable.

In the Chern band basis3, per valley and per spin, one has to consider two Chern bands
with C = ±1, in the limit where the dispersion is neglected. In total, one obtains four
C = +1-bands (2 spins × 2 valleys) and four C = −1-bands. In the chiral limit the
U(4) × U(4) symmetry holds and ω0 = 0. In the nonchiral-flat limit (spectrally flat, but
ω0, ω1 ̸= 0), the U(4) spin-valley symmetry holds. As a consequence, the option with the
smallest C is favorized for each ν = −4,−3, . . . , 3, 4. It follows that C = 0 for ν even and
C = ±1 for ν odd, representing all U(4) fm ground states. Switching the dispersion on,
only the U(2)× U(2) symmetry remains, giving the favorized states:

• C = 0 states for ν even: intervalley-coherent,

• C = ±1 states for ν = ±1: partially intervalley-coherent,

• C = ±1 states for ν = ±3: valley-polarized.

But, due to strain and substrate, the integer filling GS is an incommensurate Kakulé spiral
(IKS) state, with TRS, broken translational symmetry and intervalley coherence.

In the strong coupling approach, one considers the Wannier orbitals, which have a
fidget spinner form (cf. Fig. 10). The strong coupling locks the u, v1, v2, v3 interactions to

u : v1 : v2 : v3 = 3 : 2 : 2 : 1, (26)

associated to ”cluster charging interaction” with VBS ground states.
2Zhi-Da Song, Biao Lian, Nicolas Regnault, and B. Andrei Bernevig, Twisted bilayer graphene. II.

Stable symmetry anomaly, Phys. Rev. B 103, 205412 (2021).
3Biao Lian, Zhi-Da Song, Nicolas Regnault, Dmitri K. Efetov, Ali Yazdani, and B. Andrei Bernevig,

Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram, Phys. Rev. B 103, 205414
(2021).
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1.3 Twisting

Figure 10: The Wannier orbitals of the states that make up the moiré bands take a fidget
spinner shape.

Figure 11: Qualitative electronic structure of twisted TMDs.

1.3.2 Twisting TMDs

The treatment is almost the same as in graphene, just with a different single particle
Hamiltonian (with dispersion ∝ k2), with only one band per valley and no spin degeneracy
(cf. Fig. 11). Furthermore, there is no ”magic angle”. The effective Hamiltonian has the
form

Ĥeff =

[
− 1

2m∗

(
k − q1

2

)2
+ . . . T (r)

T †(r) − 1
2m∗

(
k + q1

2

)2
+ . . .

]
(27)

This deliver bands with equal valley and spin Chern numbers that change with the angle
θ and leads to a realization of the QSHE.
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2 FRACTIONAL CHERN INSULATORS (FCIS)

2 Fractional Chern Insulators (FCIs)

2.1 Fractional Quantum Hall Effect (FQHE)

We consider the Landau levels Hamiltonian

Ĥ =
1

2m

(
p̂− eA(r̂)

)2
. (28)

Using the ladder operators, with the magnetic length ℓ =
√

1
eB ,

â† =
ℓ√
2
[(p̂x + eAx + i(p̂y + eAy)] , (29)

we obtain
Ĥ = ωc

(
â†â+

1

2

)
, (30)

where ωc = eB
m is the cyclotron frequency (and ℏ = 1). We can define a second set of

ladder operators which commutes with first set,

b̂† =
1√
2ℓ

[
r̂x − ℓ2(p̂y + eAy)− i[r̂y + ℓ2(p̂x + eAx)]

]
. (31)

Both sets satisfy a bosonic algebra,

[â, â†] = 1, [̂b, b̂†] = 1. (32)

Choosing the symmetric gauge,

A =
1

2
(−Br̂y, Br̂x, 0), (33)

we obtain the eigenfunctions in the lowest Landau level (LLL, with na = 0),

⟨r|0, nb⟩ =
1√

2π2nb nb!ℓ

(z
ℓ

)nb

e−|z|2/(4ℓ2), nb = 0, 1, 2, · · · , (34)

where z = rx − iry. These wave functions are peaked at a radius rnb
=

√
2nbℓ. Also note

that any holomorphic function is in the LLL. The filled LLL with N particles is described
by the single Slater determinant state

ΨLLL(z1, · · · , zN ) ∝
N∏
i<j

(zi − zj) exp

(
−

N∑
j=1

|zj |2

4ℓ2

)
, (35)

with a Vandermonde determinant in front of the exponential term. Laughlin introduced
the wave function

Ψm(z1, · · · , zN ) ∝
N∏
i<j

(zi − zj)
m exp

(
−

N∑
j=1

|zj |2

4ℓ2

)
, (36)

with m an odd positive integer (for fermions). This wave function describes a state with
a reduced density: instead of filling ν = 1 (for ΨLLL), the filling here is ν = 1/m. Cor-
respondingly, the radius of the droplet expands: rN → rmN . Furthermore, the term in

10



2.1 Fractional Quantum Hall Effect (FQHE)

front of the exponential induces correlations between the particles so that the minimal
relative angular momentum between two particles is equal to m. Remarkably, the elemen-
tary excitations are in some sense already contained in the analytic form of the Laughlin
wave function. For example, the wave function of a quasihole with fractional charge 1/m
localized at z0 is given by

Ψqh
n (z1, · · · , zN |z0) ∝ Ψn(z1, · · · , zN )

N∏
l=1

(zl − z0). (37)

Considering a state with two quasiholes,

|z0, z′0⟩ ∼ Ψqh
n (z1, · · · , zN |z0, z′0), (38)

the braiding of the quasiholes gives a Berry phase of the form e2πi/m, i.e., fractional statis-
tics.

From the energetic point of view, the Laughlin state is the highest density zero-energy
eigenstate of the positive semidefinite pseudopotential interaction defined by

V̂ (m) =

m−1∑
l=0

N∑
i<j

P̂l;i,j , (39)

where P̂l;i,j is the projector on the states of particles i and j with relative angular momen-
tum l. In position basis, this potential reads

V̂ (m) =
∂2l

∂(ri − rj)2l
δ(ri − rj). (40)

To investigate the presence of a gap, we use the Girvin-MacDonald-Platzman algebra,
projecting the bare density operator ρ̂bare(r) = δ(r− r̂) on the LLL (or any other Landau
level) using the projector P̂0,

ρ̂(r) = P̂0ρ̂bare(r)P̂0. (41)

The Fourier components are then
ρ̂(q) = eiq·x̂, (42)

where x̂ is the projected position operator, and obey the commutation relation

[
ρ̂(q), ρ̂(q′)

]
= −2i sin

(
ℓ2

2
q ∧ q′

)
ρ̂(q + q′). (43)

We perform a variational calculation in the LLL, with the Hamiltonian

ĤLLL =
∑
q

v(q)δρ̂(q)δρ̂(−q), (44)

where
δρ̂(q) = ρ̂(q)− ⟨ψ0|ρ̂(q)|ψ0⟩ (45)

is the fluctuation from the ground state expectation value. With the variational state

|ϕ(k)⟩ = δρ̂(k)|ψ0⟩ (46)

11



2 FRACTIONAL CHERN INSULATORS (FCIS)

we can compute the excitation energy

∆(k) =
1

2

⟨ψ0|
[
δρ̂(−k),

[
ĤLLL, δρ̂(k)

]]
|ψ0⟩

⟨ψ0|δρ̂(−k)δρ̂(k)|ψ0⟩
. (47)

Using the commutator (43) we find the asymptotic behavior

∆(k) ∝ |k|4 for k → 0. (48)

The same behavior can be shown to hold for the Laughlin state. We interpret these results
with the existence of a finite gap above the ground state.

We now consider a system on the surface of a torus. The degeneracy of the FQHE
ground state for a filling factor ν = 1/m on a surface of genus g is given by mg. Therefore,
on a torus, the ground state manifold is m-fold degenerate. These ground states are
indistinguishable by local operators in the 1D limit: this is the key for topological order.
On a thin torus, the FQHE goes into a CDW, with distinguishable states when Lx ∼ ℓ.
The ”root configuration” states for m = 3 are

· · · 1 0 0 1 0 0 1 0 0 · · · (49)
· · · 0 1 0 0 1 0 0 1 0 · · · (50)
· · · 0 0 1 0 0 1 0 0 1 · · · (51)

In addition to the states at ν = 1/m, there are many more FQHE states at other
fractional filling factors. The elementary excitations in some of them are thought to obey
non-Abelian statistics. The off-diagonal resistivity response σxy = νe2/h shows a precise
fractional quantization at filling factor ν. The edges of a FQHE sample consist of chiral
channels carrying fractional quasiparticles.

2.2 Fractional Chern Insulators (FCIs)

Landau levels and a magnetic field are not necessarily needed for the realization of the
FQHE. In fact, FCIs arise for flat Chern bands with repulsive short-range (density-density)
interactions, described by the Hamiltonian

Ĥ =
∑
k

∑
a

εa(k)ĉ
†
k,aĉk,a +

∑
k,k′,q

∑
α,β

V αβ
q ĉ†k+q,αĉ

†
k′−q,β

ĉk′,β ĉk,α, (52)

where the first (second) term is written using operators for the band basis (local orbital
basis), labeled by latin (greek) letters. The change of basis is given by

ĉk,a =
∑
α

uk,a;αĉk,α, (53)

where uk,a;α is the k-periodic part of the Bloch vector. We now project to one band
with non-vanishing Chern number (C ̸= 0), e.g., the lower band of Haldane’s model,
and spectrally flatten the band (ε1(k) → const): this introduces exponentially decaying
hopping amplitudes in real space. The flattened Hamiltonian is

Ĥflat =
∑
k,k′,q

∑
α,β

V αβ
q (u∗k+q;αuk;α)(u

∗
k′−q;βuk′;β)ĉ

†
k+q ĉ

†
k′−q

ĉk′ ĉk, (54)

12



2.2 Fractional Chern Insulators (FCIs)

where we did not write the band index (a = 1) on the Bloch amplitudes and ladder
operators. In this Hamiltonian, the interactions are weighted by Bloch states factors. As
a consequence, topological physics enters through the Bloch states |uk⟩.

We consider now FCIs in the context of quantum geometry. The quantum geometric
tensor is

Qij(k) = ⟨∂kiu(k)|∂kju(k)⟩ − ⟨∂kiu(k)|u(k)⟩⟨u(k)|∂kju(k)⟩ (55)

≡ gij(k)−
i

2
Fij(k), (56)

where gij is the (symmetric) Fubini-Study metric, while

Fij = i
[
⟨∂kiu(k)|∂kju(k)⟩ − ⟨∂kju(k)|∂kiu(k)⟩

]
(57)

is the (antisymmetric) Berry curvature. We note that

⟨u(k)|u(k + dk)⟩ ≃ 1− 1

2
gij(k)dkidkj (58)

measures the distance between |u⟩ at different k points. The ”trace condition” states that

tr[gij(k)] ≥ |F (k)|, (59)

and the ”determinant condition” is

det[gij(k)] ≥
1

4
|F (k)|2. (60)

The properties of Landau levels and Bloch bands are summarized in the following table.

Landau levels Bloch bands

dispersion zero finite

topology |C| = 1 C ∈ Z

quantum geometry (59) (60) saturated (59) (60) satisfied (for a single band)
gij , Fij k-independent gij , Fij k-dependent

As a consequence we obtain the commutator for the projected density operators ρ̂q[
ρ̂(q), ρ̂(q′)

]
= i(q ∧ q′)Cρ̂(q + q′) +O(|q|3), (61)

which, to lowest order in |q|, corresponds to the GMP algebra. Furthermore, for the
Wannier states localized at the lattice sites R,

ψR;α(r) =
1

N

∑
k

eik·(R−r)uk;α, (62)

we obtain the spread functional

⟨ψ0|r̂2|ψ0⟩ −
∑
R

|⟨ψ0|r̂|ψR⟩|2 ≥ CAuc

2π
, (63)
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2 FRACTIONAL CHERN INSULATORS (FCIS)

where Auc is the area of a unit cell. It follows that the Wannier states in Chern bands
cannot be exponentially localized: at least in some direction, the decay has to be algebraic.

Finally, we review some evidence for FCIs from numerical studies. FCIs appear at band
fillings

ν =
k

|C|(m− 1) + 1
(64)

for k,m ∈ Z. However, systems at low fillings may be unstable to a Wigner crystal. The
results are almost independent of the model: a flat berry curvature and a flat band are
favorable for the realization of FCIs. They also arise in the so-called ”infinite interaction
limit”, defined by the limit V1 → ∞ of the repulsive NN interaction V1 in the Haldane
model (without band projection). The tests for the identification of FCIs states include:

• ground state degeneracy,

• quasi-holes states and their counting,

• ground state Chern number and spectral evolution under flux pumping,

• entanglement spectrum.

In particular, the counting of the quasiholes states involves a mapping from the FQHE
momenta (on a torus) to FCI crystal momenta:

l = Nykx + ky with


l = 0, . . . , Nϕ − 1, Nϕ = NxNy,
kx = 0, . . . , Nx − 1,
ky = 0, . . . , Ny − 1.

(65)

For example, for the Laughlin state at ν = 1/3:

• For Nϕ = 6, Nx = 3, Ny = 2

kx = 0 1 2
ky = 0 1 0 1 0 1
l = 0 1 2 3 4 5

GS: 1 0 0 1 0 0 → Qx = 1 Qy = 1
0 1 0 0 1 0 Qx = 2 Qy = 1
0 0 1 0 0 1 Qx = 0 Qy = 1

• For Nϕ = 8, Nx = 4, Ny = 2

kx = 0 1 2 3
ky = 0 1 0 1 0 1 0 1
l = 0 1 2 3 4 5 6 7

GS: 1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1

We remark that the q quasiholes states can be associated to well-defined momentum sectors.
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